Risk bounds for Statistical Learning
نویسندگان
چکیده
We propose a general theorem providing upper bounds for the risk of an empirical risk minimizer (ERM).We essentially focus on the binary classi cation framework. We extend Tsybakovs analysis of the risk of an ERM under margin type conditions by using concentration inequalities for conveniently weighted empirical processes. This allows us to deal with other ways of measuring the sizeof a class of classi ers than entropy with bracketing as in Tsybakovs work. In particular we derive new risk bounds for the ERM when the classi cation rules belong to some VC-class under margin conditions and discuss the optimality of those bounds in a minimax sense.
منابع مشابه
Risk bounds of learning processes for Lévy processes
Lévy processes refer to a class of stochastic processes, for example, Poisson processes and Brownian motions, and play an important role in stochastic processes and machine learning. Therefore, it is essential to study risk bounds of the learning process for time-dependent samples drawn from a Lévy process (or briefly called learning process for Lévy process). It is noteworthy that samples in t...
متن کاملRisk Bounds for Levy Processes in the PAC-Learning Framework
Lévy processes play an important role in the stochastic process theory. However, since samples are non-i.i.d., statistical learning results based on the i.i.d. scenarios cannot be utilized to study the risk bounds for Lévy processes. In this paper, we present risk bounds for non-i.i.d. samples drawn from Lévy processes in the PAC-learning framework. In particular, by using a concentration inequ...
متن کاملOn Bayes Risk Lower Bounds
This paper provides a general technique for lower bounding the Bayes risk of statistical estimation, applicable to arbitrary loss functions and arbitrary prior distributions. A lower bound on the Bayes risk not only serves as a lower bound on the minimax risk, but also characterizes the fundamental limit of any estimator given the prior knowledge. Our bounds are based on the notion of f -inform...
متن کامل1 7 M ay 2 00 4 Rademacher processes and bounding the risk of function learning
We construct data dependent upper bounds on the risk in function learning problems. The bounds are based on the local norms of the Rademacher process indexed by the underlying function class and they do not require prior knowledge about the distribution of training examples or any specific properties of the function class. Using Talagrand's type concentration inequalities for empirical and Rade...
متن کاملPrivacy and Statistical Risk: Formalisms and Minimax Bounds
We explore and compare a variety of definitions for privacy and disclosure limitation in statistical estimation and data analysis, including (approximate) differential privacy, testingbased definitions of privacy, and posterior guarantees on disclosure risk. We give equivalence results between the definitions, shedding light on the relationships between different formalisms for privacy. We also...
متن کاملDiscussion of “2004 Ims Medallion Lecture: Local Rademacher Complexities and Oracle Inequalities in Risk Minimization” by v. Koltchinskii
In this magnificent paper, Professor Koltchinskii offers general and powerful performance bounds for empirical risk minimization, a fundamental principle of statistical learning theory. Since the elegant pioneering work of Vapnik and Chervonenkis in the early 1970s, various such bounds have been known that relate the performance of empirical risk minimizers to combinatorial and geometrical feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003